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A THEORETICAL ANALYSIS OF THE EFFECT OF TIME LAG IN AN AUTOMATIC STABILIZATION
SYSTEII ON THE LATERAL OSCILMTORY STABILITY OF AN AUU%ANE 1 _.:

By LEONARD STEENFIELD and OZDWAYB. GATM, Jr. .

SUhl!MARY

.4 methodie presentedjor determining the e~ect oj time lag
in an automatic atabiiisatian 8ystem on the lateral osm”llatory
.9kzbi/ityoj an-airp[ane. The methodh btned on an ana@-tical-
graphicai procedure. The critical time lag of the awplane-
autopilot sydem b readily determined jrom the frequency-
respon4e analysis.

The method ia applied to a typical presentday airplane
equipped with an automafic p-lot 8enm-tire to yawing accelerm
tion and geared to the rudder 80 that rudder control i8 applied
in proportion to the yaun”ngacceleration. lle resu!h cahdated
for thi8 airplane-autop”lot ay8ternby this method are compared
m“ththe airpiane motionsca[mdatedby a step-by-step procedure.

INTRODUCTION

Recent dculations and flight tests of several airplanm
designed for operation in the transonic speed range have
indicated unsatisfactory damping of the lateral oscillation.
The results presented in reference 1show that the oscillatory
stabiIitj- can be impro-red by the use of an automatic pilot..
The calculations of reference 1, however, were made on the
assumption of a.n idealized controI system without lag.
Reference 2 points out that lag of the type in which the
amount of control applied at a given instant is assumed to
k proportional to a deviation which existed at a fixed time
previous to the given instant can be represented mat.he-
maticdly by use of the lag operator e“D*, where rC is
nondimensional time Iag based on the span and ~h is the
differential operator. Lag of this type is generally referred
to as time kg. Reference 2 suggests that for purposes of
caIculat ion the kg operator may be tipproximated by three
terms of the Taylor’s series for ey’%. This approximation
was used in some recent calculations (reference 3)and the
results were found to be erroneous and misleading. The
purpose of this report is to present a satisfactory method
for determining the effect of time lag on the lateral oscilla-
tory stability based on the exact expression of the lag
operator rather than any approximation. Some recent
analyses on the same probIem, unlcmown to the authors at
the time this probIem was being anaIyzed, are presented in
references 4 and 5.

SYMBOLS AND COEFFICIENTS

angle of roll, radians .—
angle of -jaw, radians

.,

angIe of sidealip, radiad (u/V)
:

yawing angdar velocity, radians per second ‘—
(d#/dt)

-.

yawing angular acceleration, radians per –
second per second (&jJ/d&)

rolling angular =reIocity, radians per second
(d@/df)

. .

sidealip velocity along Iateral axis, feet per
second

—

airspeed, feet per second
mass density of air, slugs per cubic foot
dynamic pressure, pounds per square foot ““

wigapari, feet
wing area, square feet
weight of airpIane, pounds
mass of airplane, slugs (lT/g)

-.

acceleration due to gratity, feet per second
per second

reIativAensity factor (m/pSb)
@lination of principal longitudinal a..is of

aiqiane with respect to flight path, positive
when principal a.. is above flight path at
nose, degrees

angIe of flight path to horizontal axis,
positive in a climb, degrees

radius of gyration in roll about principaI
longitudinal axis, feet

radius of gyration in yaw about principal
msrticrd axis, feet

nondimensional radius of gyration in roll about
principaI longitudinal axis (k=Jb)

nondimensional radius of gyration in yaw
about principaI vertical axis (k@)

nondimensional radius of gyration in roll
about longitudinal stability axis

(~K=j m? q+K,~ in* q]

—
—

—

—
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nondimensional radius of gyration in y&w
about vertical stability axis

({K.,’ cosg q+KxOz sin’ q)

nondimensional produ ct.-of-inertia parameter
((KzO’–Kx:) Sin q COS q)

‘-hf’coacien’(’”w)

(Rolling moment
rding-moment coefficient qsb )

(
Yawing moment

yawing-moment coefficient qSb )

lateral-force coefficient
(

Lateral force
(J9 )

●

●

time, seconds
nondimensional time parameter based on span

(Vt/b)

()differential operator *

period of oscillation, seconds
time for ampIitude of oscillation to damp to

om-haIf its origkl value
deflection of contrcd, radians
real part of complex root of characteristic

stability equation
angular frequency, radians per second

time lag between signal
act ual motion, seconds

for controI and its

(r,). critical time lag
K. maximum ampIitude of accckration in yaw

produced by control deflection of unit

amplitude
( 1)

j

~r dda.t

(K.),=$ K.

amplitude of control-surface oscillation pro-
duced by autopilot in response LOoscillation

of airpIane accderation
( $l.ti.pw)

phase angle, radians
phase angle of lag of 8, behind j when oscillrit-

ing control surface forces airplane to
oscillate, radians

phase angle obtained from frequency responw
of autopilot

ANALYSIS

The investigation of the effect of time lag on k lateral
oscillation may be conveniently divided info two pm%:
(a) determination of the smaIIcst time lag which WOUMrcsul~
in a ncut~ally stabIe oscillation, referred to as critical time lag,
and (b) t_@effect of a given time lag on the lateral oscihtory
stability. It is important to know some of the results of the
analysis obtained in part (a) in order ta fncilitak tlw rmnlysis
presented in part (b). Part (a) is lined on the frcqucmcy-
response method of analysis (references 6 and 7). This
method affords a relatively simpk means of determining tho
critictd time lag of an automatic stabtiization syskrn and
thereby of establishing the range of time lags for which t.hc
airplane motion is stabk. Part (b) treaL9 tho solution of a
transcendent equation by mmns of au allulyticd-grn~)l~ical
procedure. The analysis is presented for an airplnm
equipped with an automatic pilot sensitive to yawing m-
cekration and geared to the rudder so that ruddrr control
is appIied in proportion to Lhe yawing acceleration, as sug-
g=ted in reference 3. A simik analysis is applicable, how-
ever, to any automatic stabilization system with time Iag.

The cquationa of motion used aro cxprcsscd in terms of
the nondimensional time parameter based on the span of t.hc

w
b , but the results of the calculations obtainedairpIane 8b=—

in terms of 8b havo been converted from the nondimensional

time 8b to time t in seconds. Thus the discussion of the
results and the figures included in the report are given in
terms of t.

DETEIthlINATION OF CRITICALTIME LAG

The criticaI time lag of a system is dcflmxl as the time lag
that rcsuk in a nentraUy stable or stcady~tate oscillation.
The motion of the control & and tho airplano acceleration ~
when a critical time lag exists are shown in figure 1. This
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figure indicates that the relationship between the time kg r
ami the phase angIe o between the motion of the control and

the airpIane accekration can be expressed as r =~. Since
&l

r can be expressed as a function of 6, the frequency-response

method can be utilized to determine the criticaI time Iag
for a combined airpIane-autopiIot system. This method re-
quires that the frequency-response curves be calculated for “-
the airpIane and autupilot separately and the results analyzed. -
to ascertain the conditions for neut.rrd oscillatory stabiMy .
of the airpIane-autopiIot system.

Frequency-response curves for airplane.-The frequency- _
response curves for the airplane me obtained from the cal-
culation of the steadj-+tate motion of the airplane in response
to a sinusoidal forcing function of unit ampIitude (see ref- .
erence 8). Thus if

..—
-.=

&=SiIt @b
.. .

the acceleration of the airplane is
—

D/#=(KA), sin (Wh+ L)

The values of (KJ., known as the amplitude ratio, and 6A -
are obtained over the,desired range of angular frequencies by .._
substituting k for ~b in the expression for ~b’#/& which is
derived from the lateraI equations of motion. The non- ““-”-
dirnensionaI Iateral equations of motion, referred to stability
ares, for a gken contrcd deflection are .

The derivatives C,,,=% and CY,r=~ are usually very smalI and therefore have been negkckl in equations (l).

Hence,

2~bKx2Db2‘;C,vDb O – Clfl

~/2pbKxzDb2+, Db ~,,r – c., .-

Ll:+ –~Cy=D8– CL 0 2pbD~—Crfl
—.

L3r
(2] ‘-

2pb&2Db2-; ~LpDb 2pbKxzDb2 –; Cir Db – C,fl

After the numerator and denominator are expanded by the
method of determinants, the expression for DaV/& resuhe in
the ratio of two pcdynomials in Db. The substitution of
& for Dt, in equation (2) gives a compkx number A+=
which may be expressed as (KJ ~f’~. The ampIitude ratio

(E&),, which is equal ta K. &t can be determined from the

relation (KA),= J= The phase mgIe 8A can be de- _

termined from the relation e’= tan-x ~
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Frequency response of autopiloti-The frequency response
of the autopilot is obtained from the equation for the control
motion with time lag taken into account

&= k,~**~(~*– r,) (3a)

where the km ~/#(8b- ~#) sigtifk the f&ct that the amo~t
of control applied at a given instant is proportional to the
acceleration at. a fkcd time r, previous to the given imtant.
This time-hg effect can k expressed by the so-called lag
operator e-’~Db. Thus equation (3a) becomes

&=k,Dh2#e - ‘~b (3b)

Solving equation (3b) for ~~24/& gives

(4)

where
b’+,

(Kc),=$ ‘c V2 & atifwt~ot=— .

Substituting iu, for D~in equation (4) results in an ampIitude

ratio (Kc),=#J which is independent of frequency, and a
8

phase angle 8C= r,u,.
Conditions for stability,-The necessary and suff~cient

conditions for any one of the oscillatory modw to be neutrally
stable are that, at a particular frequency, the phase angles
and amplitude ratios of the airplane and autopilot must be
equal-that is, f?~= OC and (KJ,= (Kc),. l?hwn though
these conditions am satisfied, the resuhant motion of the
airplane which is composed of all the individual modes of
motion may be unstalde since, as is pointed out subsequently,
an additional unstable oscillatory mode may be present. M
gencral, the condition which must be satisfied in order that
all the osci~atory modes be st.able is that, at each angular

(KJ,
frequency where 64= @c,the ratio ~, must be less than 1

at tba~ frequency. The mathemat.icrd proof of this state-
ment is given in reference 9.

“Illustrative example. —The foregoing method is applied
to a typical present-day high-speed airplane having the
characteristics presented in table 1. The value of the control-
gearing ratio k is arbitrarily assumed to be 0.0427. (This
value of k= O.0427 corresponds to a rudder deflection of 10
for a yawing acceleration of 23..40/see/see.) The amplitude-
ratio and phase-angle curves for the airplane, P1Otted as a

v
function of angular frequency u, where U=U, T) me pre-

sented as solid-line curves in figures 2 (a) and 2 (b), respec-
tively. As the frequency increase9 to infinity, K.4 approache9
a value of 15.98 and & approaches T. The dashed line in
figure 2 (a), which is independent of frequency, is the ampli-
tude ratio of the autopilot K& The phase-angle curves of
the autopilot are straight lines with slopes equal to r, where

b
r=v r,; and are shown as dashed lines in figure 2 ~) for

several vahws of T. Since the phasa angle remains betwcwn
the range of O to 2T, @c=m con~inues to repeat itself when-
ever raJz2u. To tako account of this fact, 13cis plotted as
a series of parallel lines for each vaIue of ~. I?iguro 2 (a)
indicates that KA=K& at CO=3,8 and u=8.5. The corre-
sponding values of r whero 8A= f3cat u=3.8 and ti=8.G are
r=l .63 and r= O.38, respectively. OIm of tho oscillatory
modes of motion is thus neutrally stal.Je when r= 1.03 and
r= 0,38. However, as mentioned prwriously, tho motion of
the airplane is neutrally stable only if aU other oscihtory
modes present are stal.de. This condition is satisfied for
r= 0.38, since for each value of u where 6A= 8C the ratio

KA
~<1. When r= 1.63, one of the oscillatory modes is

neutrally stable but the system is unstable, because at U= 6,

8A=6C but ~>1. An analysis indicates that for values

of KC<15.98, which is the limiting value of KAj tho system
wiII be unstable for any infinitesimal time lag, The reason for
the instability is that, for any infinitesimal time lag, W
value of 84 is equal to 8C at somo high frequency where it.

K.4
can be shown that —> I sinco at tho very high frequencies

Kc

KL=(KA)ti. -1-~A

KC (KJtim –A&
---

where A& and A& are small incremental values.

TABLE L-STABILITY DERIVATIVES AND MASS CHAR
ACTERISTICS OF A TYPICAL PRESENT-DAl- AIRPLANE

W/S, Ib/ftZ------------------------------------------ 05
s, ft?- - -------------------------------------- ------- 130 _

. b, ft-.----x ----------------------------------------- 2a
p,sIw/fta ----------------------------------------- _().00089
v, ft/wo -------------------------------------------- 707
T, den----------- .---------------------------—---- Q
cL----------------------------------------------- “0:23
pb----------------------------------------------- 80.7
KS ----------------------------------------------- 0.00007
K#--------------------------------------------- 04513
h"xz---__--__---------------------_.---------w----- –0.00145
q, deg----- ------- __-__- —---------------------- ---- -2.0
Cl,, per ra&an ----------------------------------- –0.40
Cl,, pcr rtiian.. ------ .--. ---. __. -_d.---— __________ 0.08
Cm=,~rrdan -------------------------------------- –0.0155
Cmr,~rrtiian ----------------------------------------- –.0.40
Cy=,~rrtiian -------------------------------------- o
Cyr, per rtiian -------------------------------------- o
CYP,pm rtian----- ____------------ .----- _.___ -_-A- -1.0
Cm~,~rrtiian ---------------------------------------- 0.25
C,p, per radian ----------------- ---------------------- –0.lm
c ~, , ~rrdian --------------------------------------r –0.103
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In order to vcrif,y the results predicted by the preceding
analysis, mot ions of the airplane were calculated subsequent
to an initial disturbance of 5° in sideslip. The calculations
involved a step-by-step procedure based on the Kutta 3/8
method (reference 10).The results of these calculations for
T=O.38 and r= 1.63 arc presented in figures 3 and 4, respec-
tively. The solid-line curve in figuro 3 was obtained by
using a time increment of 0.095 and the motion is seen to bc
slightly unstable, whereas neutral stability is predicted by
frequency-responso analysis for r= O.38. An additiomd cal-
culation was made by using a time increment of 0.0475,
represented by the dashed-hne curve in figure 3, and although
the motion was still slightly unstable, th~ trend indicated
by reducing the time increment was such as to make tk
oscillation more nearly neutrally stable. The airplano mo-
tion for r= 1.63 is presented in figure 4 and, as was predicted,
the motion is unstable. A neutrally stable oscillation ww
also predicted for this value of time lag but it is apparent

from figure 4 that tho unsh=ddc mode influences the airplrmc
motion more than the neutrally stable rnodr.

EFFECTOFTIMELAGONLATERALOSCILLATORYSTABILITY

Derivation of equations,— Tho uondirncnsional equations
of motion, referred to the stabiIity axes, wfich include the
effect of an autopilot applying rudder cent.rd iu proportion
ta the yawing acceleration at time sb—r,) arc obtained by
combining equation (3b) with equations (1). When #,ek’*
is substituted for ~, J@i$b for ~, and &ehth for 19in the rc-
stitant equation WritLen in dctcrkinant form, k must k a
root of the characteristic stablity equation

Ah4+BhS+ ~’+Dh+E+k,e+~h(A’h4 +B’hs+ C’h’+D’h)=O

(5)

where A, 1?, C, D, E, A’, B’, C’, and ~’ me functions of t.hi
mass and aerodynamic parametwe of the airplane, Tbo
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exprwsions for A, B, (?, 11, and l? are given in reference 1 and

.4’= –4p,2K#Cx,
r

B’= imK~2C’yfl+i.@,,)C,,r

f f = (‘1 )–~C,,c,fl+;c.=ci8 c=,,
.-

~’=~=~,flc,,r

The damping and period of the lateral oscillation in
seconds are given by the expressions

~u= –0.693 b
.. a T

1 (6)

where a and W.are the real and imaginary parts of a complex
root of equation (5).

Determination of roots of transcendental equation.-’l%e
characteristic stability equation of this system (equation
(5))is seen to be a transcendental equation because a con-
stant time lag rt in the automatic stabilization system ia rep-
resented by the so-called Iag opemtor e-. ~. It is apparent
that the complex roots of such an equakion cannot be deter--
mined by conventional methods. A method of obtainkg
the complex roots of this transcendental equation for a par-
ticular value of r, is therefore presented.

If a+iu, is substituted for h in equation (5) and the real
and imaginary quantities are separated, two equations in a
and U*result.:

e-*a=F~a, u,) (7b)
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.4 simultaneous solution of equations (7a) and (7b) gives the
desired values of a and W,which satisfy equation (5). The
method used to solve equations (7a) and (7b) simultaneously
is basicaII,y a graphical procedure. For a series of values of
ti~, the right-hand sides of equations (7a) and (7b) are
plotted against. a as illustrated in figure 5. The add lines
and dashed Iines correspond to the functions ~1(a,uJ and
J’,(a,u,), respectively. The variation of e-r~a with a is also
plotted in figure 5. The exact values of a and u, for which
F, (a,uJ =1’*(a,u,) =e-I’ are determined from a cross plot
of the results of figure 5 as shown in figure 6. In this figure,
with a as the abscissa and u, as the ordinate, are pIottcd the
values of a and ~, which correspond to tlm intersection of
the e-r~’ curve with the functions l’1(a,u,) and ~z(a,u, ).
Th& solid curve in figure 6 thus satisfies the equation
~-~,’ = fi’l(a.,u,) and the dashed curve satisfies the equation
e-’’ta=F2(fz,@J, The vaks of a and U, at the intersection
of these two curves therefore determine. a mot of the char-
acteristic stability equation (equation (5) ). The period and
damping of the lateral oscillation arc determined from equa-
tions (6) by using this root.

r! I \
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1
,
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FIOURE6.—A erase plot of the polnteof Inte?eactlonof F@,u,) andF&w) wfthv,- as

determfn~ from figure5.

An alternative method for the simultaneous soIution of

equations (7a) and (7b) is to substitute I —r,a + -r~—~

for e-t’ in each of these equations. The cnlctdations in-
voIved become considerable y less Iaborious when this ap-
proximation is made and results obtained by using this alter-
native method have been found to be in excclkmt agrcwncnt
with rwults obtained from the method described previously.
Figure 7 shows that for ]rfl] = 1 very close agreement. is
obtained between the exact vaIue of e-rta am-l its appwxi-
mation by three and four terms of the series for cy~c. In
actuaI practice the product TJZ will almost invariably be
much less than 1. When this substitution is made, boLh
equations (7a) and (7b)l.wcome seventh degree in a for a
given value of w,, Although tkse equations arc of high
degree, no serious problcm is prcsenkl since the Yaks of
a desired must be real and, in general, smalI; Lha.t is, only
one or two of the roots of them high-degree equations mo
of interes~. In order to calculato the complex roots of
equation (5)for a particular valuf3 of r,, the following pro-
cedure should be used. l?or a sequence of values of w,
compute a from equations (7a) and (7b). The results ob-
tained from each equation may then be plotted in a figure
similar to figure 6 and the. complex root of the c.haractcrist ic
stability equation determined from the in twscction of the
two resulting curves. If the value of t.hc approximate
series for e-~a is in good agreement wit-h thu exact wduo
of e-~e for the a determined from the inLerscction of the
two curves, then the complex root obLaincd is vaIhl. A
point of intersection for a value of a which woukl not give
satisfactory agreement between tho approximate series and
e~t~ might exis~, however. If such bc the case, tho accurate
point of intersection is readily ascertained. The estimntcd
vahms of a and w, represent the point of inLersccLion of
~1(a,u,) or l’j(a,u,) with llw series approximating ey~e.
The desired point is the point of inte-rscction of l’l(a,~,) or
F’g(a,a,) with e~~”. Tho fmt step is to evaluato tho twm
e~.a for several vaIues of a in the vicinity of tho estimated

point of intersection. The expressions F,(a,ti,) and ~,(a,u,)

are then evaluated for vaIum of a, slight[y Iess than and
greater than the e9timatcd value of a, for several values of
a in the range of the estimated point of intersection, Thus,
the corrected curves of equaLions (7a) and (7b) are obtained
and at thek point of intersection, t.hc accurate values of a
and u, are determined.

A method for constructing curves of constant period
and damping as a function of r~ and kt is presented in tho
appendix.

Range of W, and a to be used in the determination of the
oomplex roots of the characteristic stabiIity equation,—In
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general, the analysis required to determine the damping of
the airplane-autopiIot system would be carried out for those
values of r. that result in a stable system, since the purpose of
C~Ui~)}JII~ till ZtU_~ltiIl~ t} lLLI till tbULU~llUb El LU SLU1JL41ZL!U~

increase the damping of the airplane motions. The range
of r. for mhich the seystem is stabIe is determined from the
frequency-response cur-res of the airplane and autopiIot as
indicated in the section entitled “Determination of Critical
Time Lag.” Thus, if the system is stable, only negative
values of a need be investigated. Also, if two stabIe oscil-
latory modes of motion e.tit, the least stable. one is of
greatest interest-that is, the compk root with the smauest
real part is the one of most importance.

The estimated range of values for w that should be used

in the. analysis to determine the effect of some particular
value of time Iag, Iocated between r.=0 and the criticaI
time Iag (r,)=, on the damping of the oscilktion is obtained
from the known values of the. frequency of the oscilktion for _
the cases where T,=O and r,= (T,)C. The imaginary part of _
the complex root of equation (5), which becomes a quart ic
equation when r,=O, gives the value of u, for the case of
r,=O. The -iaIue of w for r.= (r,). is determined from the
analysis presented in the section entitled “Determination of _ ~
CriticaI Time L~~.” h mentioned in reference 11, the ---
frequency of the oscillation decreases as time Iag increases;
thus for a value of O<r,< (r,)., the estimated vaks _of g=
should incIude frequencies greater than the vaIue of ~, at
r.= (r’)= and Iess than the vahe of M*at rS=O.



300 REPORT 10 l%NATIONAL ADVISORY COMMITTEE FOll AERONAUTICS

< S(3C t se
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EFFIWI! OF TIME LAG IN STABILIZATION SYSTEM ON

A.frpIane motions for various values of r.—For purposes of
comparison, the motion of the airphme in sidedip subsequent
to an initial displacement in sideslip of 5° was caIcuIated, with
the use of a step-byatep procedure, for I-=0, 0.10, 0.20, 0.25,
0.287, and 0.38. The results are presented in @ures 8 (a)
to 8 (f). These figures indicate that as r rncreases from O to
0.2 the period increases slightly, whereas the damprng is
markedIy improved. The frequency of the oscillation is

, , I 1 1 h 1 1 1 r

I t /

2.0 I 1

I I I I

—
- -

CJl
o Jo 20 Jw .40

q sec

[a) Damptng.
(b) Pwiod.

FIGCEI o.–Efmctof the Lagon the period and damprng oftbe kaeral cm2flIati0n.

Lu4TERAL 0SC1LLAT0R% STABILITY OF -41RPL4N~S 3M. -r

about w=3.7. However, as r continues to increase,the ..
presenee of a high-frequency oscillation is noted in the motion --
since this oscillation becomes Iess damped and the 10W- _
hquency osdat ion becomes more heavily damped. (See
figs. 8 (d) and 8 (e).) For 7=0.38, the motion is neutra~y _
stable at- the high frequency of W= 8.5 but the low-frequency
oscillation does not appear in this motion since it is very “
vielI damped. In figures 9 (a) and 9 (b), the period and “—
damping of the latertd oscillation for severtd dues of T,

.—

calculated by the method discussed h this report, are mm-.
pared with the period and damping readily obta~ed from the
motion cahdations shown in figures 8 (a)to8’(f).The Yery _.
good agreement between the results presented in figures
9 (a) and 9 (b) would probably be improved if the increment
selected for the step-by-step cahdations were reduced. The
trends indicated by these results, howe~er, are applicable
only to the particular airplane-autopilot system considered
in this exampIe and may not be generaked to any other- ‘–
arbitrary airplane-autopilot system. .=

CONCLUDING REMARKS
.-

A method is presented for determining the effect of time -
lag in an automatic stabilization system on the lateral -
oscilIat.ory stabiIity of an airphme. The method is applied
to a typicaI present-day airplane equipped with an automatic
pflot sensitive to yawing accekration and ~~d to the .-.
rudder so that rudder control is appIied in proportion to the .
yawing acceleration. The results calculated for an airpIane-
autopilot system by the method described are in good .
agreement with the airpIane motions calculated by a
step-bystep procedure.

,.
.-

.-.-

TJANGLEY ~ER03iAUTIc.*L L4EIo R4TORT,
.=

.—

~.4TIONAL ~DVLSORY COMMITTEE FOE ~ER02iAUTICS,

kNGLEY FIELD, JTA.,Octoberl?8, 194.9.
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APPENDIX

A METHOD FOR CONSTRUCTING CURVES OF CONSTANT

If anover-all picture is desired of the effect of time Iag
for a given value of k, or the eflect of varying k, for a given
timo lag, construction of curves of constant period and damp-
ing with the use of the following method is recommended.

The characteristic stability equation of the airplane-
autopilot system (equation (5)) may be rewritten in the
form:

Ah’+ Bh8+Chg+Dh+E
–(A~ “e-’”

(AI)

If A=a+i~, is substituted in each side of equation (Al),
the condition that Abe a root of the characteristic equation
is that the compkx number Al +{B1 obtained from the Ief&
hand side must be equal to the one obtained from the righk
hand side As+iBg. The quantities A, +iB1 and A2+iB2
may be repr~ent.ed by the expressions l?le% and R2el@z,
rmpectiveIy. Therefore, this requirement is equivalent to
saying that RI=Ra and 131-69if x is to be a root of equation
(Al). If A=a+b, is substituted in the right-hand side,
the following expressions result:

k,e-rta(cos rem,—i sin r,q)=A9+iB2=Rae10~
where

Rz= k,e ‘Tea
and

Oa=tan-l
—siI1 rca~.— r@~=2U- T*W,
Cos T,W*

Therefore, if k=a+{u, is substituted in the left-hand side and
A1+iB1=R1e{81 is obtained, the value of T required to make.
I%=t?~ can be determined. Since r, is therefore determined
n.nd a is fixed, the value of k~necasary to make RI=R2 can

be calculated. Thus for these valu.ss of k, and r,,
h=a.+iw,

isarootof the transcendental stability equation (equation(5)).
For a given value of a, the anaIysis may bo made through-

out tho range of w, and the corresponding values of k, and
r, determined. A curve representing this vaIue of a may then
be plotted as a function of k. and r,. This procedure is
repeated for a sequence of VSIUCSof a and the corresponding
curves in the k,,r, plane are pIottcd. Each point on a curve
of constant a represents a particular value of w,. Curves of
constant frequency may therefore be plotted by drawing a
curve through the given value. of a, on each one of the a
curves. The values of a and w, are converted to TX and P
by equations (6). The final result would consist of curves of
constant damping T% and curves of constant period P in the
k,,r, plane. Thus the effect of time lag on the lateral oscil-
latione for any value of the gearing ratio k,, or the effect of
varying k. for any value of time lag, may be ascertained.
For purposes of illustration several lines of constant 1’%and
P in the k,r plane were calculated for the typical present-
day airplane described in table I and are shown in figure 10.

A curve can be plotted in the k,,r, plane which divides the
quadrant into a satisfactory and an unsatisfactory region
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according to any prescribed relationship between tht prriod
and damping of the latera.I oscillation, In order to calculate
this curve, several values of a and w, t.ha~ exactIy satisfy the
criterion should be selected and substituted in equation (Al).
The combination of k, and r, is then obtained for each set of
values of a and w, and the desired curve is plotted in the
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